4.8 Article

In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes

Journal

ACTA BIOMATERIALIA
Volume 102, Issue -, Pages 440-457

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.11.035

Keywords

Calcium phosphate; Calcium; Phosphate; Local pH; Bioactivity; Osteoinductivity; Ectopic bone formation; Heterotopic bone formation; Bone graft substitute; Beta-tricalcium phosphate

Funding

  1. Swiss National Science Foundation [200021_169027]
  2. Swiss National Science Foundation (SNF) [200021_169027] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (bioactivity) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of beta-Tricalcium Phosphate (beta-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the beta-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. Statement of significance Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of beta-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available