4.8 Article

Amplified Cancer Immunotherapy of a Surface-Engineered Antigenic Microparticle Vaccine by Synergistically Modulating Tumor Microenvironment

Journal

ACS NANO
Volume 13, Issue 11, Pages 12553-12566

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b03288

Keywords

anticancer vaccine; tumor microenvironment; immunomodulation; cell-engineering; spatiotemporal

Funding

  1. National Natural Science Foundation of China [81573364, U1804183, 81673021]
  2. Science and Technology Project of Henan Province [182102310117]
  3. Modern Analysis and Computer Center of Zhengzhou University

Ask authors/readers for more resources

Efficient cancer vaccines not only require the co-delivery of potent antigens and highly immunostimulatory adjuvants to initiate robust tumor-specific host immune response but also solve the spatiotemporal consistency of host immunity and tumor microenvironment (TME) immunomodulation. Here, we designed a biomaterials-based strategy for converting tumor-derived antigenic microparticles (T-MPs) into a cancer vaccine to meet this conundrum and demonstrated its therapeutic potential in multiple murine tumor models. The internal cavity of T-MPs was employed to store nano-Fe3O4 (Fe3O4/T-MPs), and then dense adjuvant CpG-loaded liposome arrays (CpG/Lipo) were tethered on the surface of Fe3O4/T-MP through mild surface engineering to get a vaccine (Fe3O4/T-MPs-CpG/Lipo), demonstrating that co-delivery of Fe3O4/T-MPs and CpG/Lipo to antigen presenting cells (APCs) could elicit strong tumor antigen-specific host immune response. Meanwhile, vaccines distributed in the TME could reverse infiltrated tumor-associated macrophages into a tumor-suppressive M1 phenotype by nano-Fe3O4, amazingly induce abundant infiltration of cytotoxic T lymphocytes, and transform a cold tumor into a hot tumor. Furthermore, amplified antitumor immunity was realized by the combination of an Fe3O4/T-MPs-CpG/Lipo vaccine and immune checkpoint PD-L1 blockade, specifically inhibiting similar to 83% of the progression of B16F10-bearing mice and extending the median survival time to 3 months. Overall, this study synergistically modulates the tumor immunosuppressive network and host antitumor immunity in a spatiotemporal manner, which suggests a general cell-engineering strategy tailored to a personalized vaccine from autologous cancer cell materials of each individual patient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available