4.8 Article

A Hydrophobic, Self-Powered, Electromagnetic Shielding PVDF-Based Wearable Device for Human Body Monitoring and Protection

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 50, Pages 47340-47349

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b16120

Keywords

conductive networks; piezoelectric PVDF polymer; electromagnetic interference (EMI) shielding; sensing; human body monitoring

Funding

  1. National Natural Science Foundation of China [11822209, 11572309, 11572310]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB22040502]
  3. Collaborative Innovation Center of Suzhou Nano Science and Technology

Ask authors/readers for more resources

With the rapid development of the electronics, information technology, and wearable devices, problems of the power crisis and electromagnetic radiation pollution have emerged. A piezoelectric wearable textile combined with electromagnetic shielding performance has become a favorable solution. Herein, a multifunctional PVDF-based wearable sensor with both electromagnetic shielding function and human body monitoring performance is proposed by incorporating silver nanowires (Ag NWs) and multiwall carbon nanotubes (MWCNTs) hybrid-networks into PVDF-casted commercial nonwoven fabrics (NWF). The coordination of Ag NWs and MWCNTs networks ensures the ideal electrical conductivity and mechanical strength. The maximum shielding value of the developed sensor reaches up to 34 dB when the area densities of the Ag NWs and MWCNT are kept at 1.9 and 2.0 mg/cm(2), respectively. Additionally, the hydrophobicity of the as-proposed sensor (water contact angle of similar to 110.0 degrees) ensures the self-cleaning function and makes it resistive against water and dirt. Moreover, the sensor possesses a force-sensing property by generating different piezoelectric voltages (0, 0.4, 1.0, and 1.5 V) when stimulated by various forces (0, 20, 44, and 60 N). Not only can it respond to different external stress in a timely manner (response sensitivity of similar to 0.024 V/N, response time of similar to 35 ms), but it can also monitor different body movements, such as joint bending, running, and jumping. This work opens up a new prospect of monitoring the human body as well as protecting human health from electromagnetic radiation surroundings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available