4.7 Article

Effect of Long-Term Fungicide Applications on Virulence and Diversity of Colletotrichum spp. Associated to Olive Anthracnose

Journal

PLANTS-BASEL
Volume 8, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/plants8090311

Keywords

anthracnose; control; Olea europaea L; fungicides resistance

Categories

Funding

  1. project Integrated protection of the Alentejo olive grove. Contributions to its innovation and improvement against its key enemies [ALT20-03-0145-FEDER-000029]
  2. European Union through the European Regional Development Fund under the ALENTEJO 2020 (Regional Operational Program of the Alentejo)
  3. project Control of olive anthracnose through gene silencing and gene expression using a plant virus vector [PTDC/ASP-PLA/28263/2017]
  4. project Development of a new virus-based vector to control TSWV in tomato plants [PTDC/ASP-PLA/28266/2017]
  5. European Union through the European Regional Development Fund, under the ALENTEJO 2020 (Regional Operational Program of the Alentejo)
  6. Foundation for Science and Technology (FCT)
  7. FCT-Foundation for Science and Technology [UID/AGR/00115/2019]
  8. European Union through the European Regional Development Fund, under the ALGARVE 2020 (Regional Operational Program of the Algarve)
  9. Fundação para a Ciência e a Tecnologia [PTDC/ASP-PLA/28266/2017, PTDC/ASP-PLA/28263/2017] Funding Source: FCT

Ask authors/readers for more resources

In this study, the presence and variability of Colletotrichum spp. was evaluated by comparing fungal isolates obtained from olive trees under long-time phytosanitary treatments with trees without any phytosanitary treatments (treated and untreated, respectively). Olive fruits of trees of the highly susceptible 'Galega vulgar' cultivar growing in the Alentejo region were used as samples. From the 210 olive trees sampled (half from treated and half from untreated orchards), 125 (59.5%) presented Colletotrichum spp., with a significant lower number of infected trees in treated (39) when compared to untreated orchards (86). The alignment and analysis of beta-tubulin (tub2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), chitin synthase (CHS-1) and histone H3 (HIS-3) gene sequences allowed the identification of all 125 isolates as belonging to the C. acutatum complex. The vast majority of the isolates (124) were identified as C. nymphaeae and one isolate, from an untreated tree, was identified as C. godetiae. Isolates were divided into five different groups: Group A: 39 isolates from treated trees matched in 100% with C. nymphaeae sequences from the database; Group B: 76 isolates from untreated trees matched in 100% with C. nymphaeae sequences from the database; Group C: one isolate from untreated trees presenting a single nucleotidic difference in the HIS-3 sequence; Group D: eight isolates from untreated trees presenting differences in two nucleotides in the tub2 sequences that changed the protein structure, together with differences in two specific nucleotides of the GAPDH sequences; Group E: one isolate, from untreated olive trees, matched 100% with C. godetiae sequences from the database in all genes. Considering the similarities of the sampled areas, our results show that the long-time application of fungicides may have caused a reduction in the number of olive trees infected with Colletotrichum spp. but an increase in the number of fruits positive to Colletotrichum spp. within each tree, which may suggest different degrees of virulence of Colletotrichum isolates from trees growing different management regimes. It is imperative that the fungicides described as causing resistance are applied at appropriate times and intervals, since their efficiency decreases when applied incorrectly and new and more virulent species may arise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available