4.6 Review

Interaction Between Planetary Boundary Layer and PM2.5 Pollution in Megacities in China: a Review

Journal

CURRENT POLLUTION REPORTS
Volume 5, Issue 4, Pages 261-271

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s40726-019-00124-5

Keywords

Megacity; Planetary boundary layer; Urbanization; Local circulation; Aerosol radiative effect

Ask authors/readers for more resources

Purpose of Review During the past decades, the number and size of megacities have been growing dramatically in China. Most of Chinese megacities are suffering from heavy PM2.5 pollution. In the pollution formation, the planetary boundary layer (PBL) plays an important role. This review is aimed at presenting the current state of understanding of the PBL-PM2.5 interaction in megacities, as well as to identify the main gaps in current knowledge and further research needs. Recent Findings The PBL is critical to the formation of urban PM2.5 pollution at multiple temporal scales, ranging from diurnal change to seasonal variation. For the essential PBL structure/process in pollution, the coastal megacities have different concerns from the mountainous or land-locked megacities. In the coastal cities, the recirculation induced by sea-land breeze can accumulate pollutants, whereas in the valley/basin, the blocking effects of terrains can lead to stagnant conditions and thermal inversion. Within a megacity, although the urbanization-induced land use change can cause thermodynamic perturbations and facilitate the development of PBL, the increases in emissions outweigh this impact, resulting in a net increase of aerosol concentration. Moreover, the aerosol radiative effects can modify the PBL by heating the upper layers and reducing the surface heat flux, suppressing the PBL and exacerbating the pollution. This review presented the PBL-PM2.5 interaction in 13 Chinese megacities with various geographic conditions and elucidated the critical influencing processes. To further understand the complicated interactions, long-term observations of meteorology and aerosol properties with multi-layers in the PBL need to be implemented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available