4.7 Article

The Involvement of the Banana F-Box Protein MaEBF1 in Regulating Chilling-Inhibited Starch Degradation through Interaction with a MaNAC67-Like Protein

Journal

BIOMOLECULES
Volume 9, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/biom9100552

Keywords

Fenjiao banana; ripening disorder; starch degradation; chilling injury; MaEBF1; MaNAC67-like

Funding

  1. National Key Research and Development Program [2016YFD0400103]
  2. National Natural Science Foundation of China [31701970, 31372112]
  3. Pearl River Talent Program for Young Talent [2017GC010321]
  4. earmarked fund for Modern Agro-industry Technology Research System [CARS-32-09]
  5. Guangdong Banana and Pineapple Industry Technology System Innovation Team

Ask authors/readers for more resources

Low-temperature storage is a common strategy for preserving and transporting vegetables and fruits. However, many fruits are hypersensitive to chilling injury, including bananas. In the present study, storage conditions of 11 degrees C delayed the ripening of Fenjiao (Musa ABB Pisang Awak) banana, and the pulp could be softened after ethephon treatment. Storage conditions of 7 degrees C prevented fruit from fully softening, and fruit contained a significantly higher starch content and lower soluble sugar content. MaEBF1, a critical gene component in the ethylene signaling pathway, was repressed during ripening after fruit had been stored for 12 days at 7 degrees C. The expression of a series of starch degradation-related genes and a MaNAC67-like gene were also severely repressed. Both MaEBF1 and MaNAC67-like genes were ethylene-inducible and localized in the nucleus. MaNAC67-like protein was able to physically bind to the promoter of genes associated with starch degradation, including MaBAM6, MaSEX4, and MaMEX1. Yeast two-hybrid, GST-pull down, and BiFC assays showed that MaEBF1 interacted with the MaNAC67-like protein, and their interaction further activated the promoters of MaBAM6 and MaSEX4. The current study indicates that MaNAC67-like is a direct regulator of starch degradation and potential for involvement in regulating chilling-inhibited starch degradation by interacting with the ethylene signaling components in banana fruit. The present work paves the way for further functional analysis of MaEBF1 and MaNAC67-like in banana, which will be useful for understanding the regulation of banana starch metabolism and fruit ripening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available