4.8 Article

Magnetoelectric 3D scaffolds for enhanced bone cell proliferation

Journal

APPLIED MATERIALS TODAY
Volume 16, Issue -, Pages 290-300

Publisher

ELSEVIER
DOI: 10.1016/j.apmt.2019.06.004

Keywords

Magnetoelectric; Scaffolds; Bone Cell; Proliferation; Bismuth Ferrite

Funding

  1. European Research Council Starting Grant Magnetoelectric Chemonanorobotics for Chemical and Biomedical Applications (ELECTROCHEMBOTS) [336456]
  2. ETH Career Seed Grant [SEED-14161]
  3. ETH grant [ETH-11 14-2]

Ask authors/readers for more resources

Regulation of cellular functions by an exogenous and non-invasive approach has the means of revolutionizing the field of tissue engineering. In this direction, use of electric fields has garnered significant interest due to its positive influence on cell adhesion, proliferation, and differentiation. Recently, this has been achieved by placing electrodes in direct contact with cells, or through a non-contact approach by inducing deformation of piezoelectric membranes. In this work, we have developed 3D magnetoelectric inverse opal scaffolds that can generate localized electric fields upon the application of magnetic fields. These scaffolds were composed of biodegradable poly(l-lactic acid), and cobalt ferrite@bismuth ferrite magnetoelectric nanoparticles and were designed to mimic the natural micro-environment of cancellous bone by endowing them with piezoelectric properties and porosity. The effect of magnetic field induced electric stimulation on the proliferation of human-derived MG63 osteoblast cells, a model for primary osteoblast cells, was investigated on 2D membranes and 3D scaffolds by applying a magnetic field of 13 mT at 1.1 kHz. During this study, a 134% increase in cell proliferation was achieved on stimulated 3D scaffolds in comparison to non-stimulated ones, and in case of 2D membranes, we have obtained an increase of 43% of stimulated 2D membranes in comparison to non-stimulated ones. These findings showcase the importance of designing scaffolds with 3D characteristics that provide a suitable micro-environment for host cells. The results obtained from this work further demonstrate the beneficial influence that the magnetoelectric effect has on regulating cellular functions and draws light on the possibility of exploiting this effect for tissue engineering and regenerative medicine in the future. (C) 2019 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available