4.3 Article

Size-dependent bistability in multiferroic nanoparticles

Journal

PHYSICAL REVIEW MATERIALS
Volume 3, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.3.084402

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada through its Discovery program [RGPIN-2015-03938]

Ask authors/readers for more resources

Most multiferroic materials with coexisting ferroelectric and magnetic order exhibit cycloidal antiferromagnetism with wavelength of several nanometers. The prototypical example is bismuth ferrite (BiFeO3 or BFO), a room-temperature multiferroic considered for a number of technological applications. While most applications require small sizes such as nanoparticles, little is known about the state of these materials when their sizes are comparable to the cycloid wavelength. This work describes a microscopic theory of cycloidal magnetism in nanoparticles based on Hamiltonian calculations. It is demonstrated that magnetic anisotropy close to the surface has a huge impact on the multiferroic ground state. For certain nanoparticle sizes the modulus of the ferromagnetic and ferroelectric moments are bistable, an effect that may be used in the design of ideal memory bits that can be switched electrically and read out magnetically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available