4.5 Article

Atomic-Level Mechanisms for Phospholamban Regulation of the Calcium Pump

Journal

BIOPHYSICAL JOURNAL
Volume 108, Issue 7, Pages 1697-1708

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2015.03.004

Keywords

-

Categories

Funding

  1. American Heart Association [12SDG12060656]
  2. National Institutes of Health [R01GM27906]
  3. CONACYT Mexico

Ask authors/readers for more resources

We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarco-plasmic reticulum Ca2+-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca2+-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca2+-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1-7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K+ and 3 mM Mg2+. Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K+ ions bind transiently (<= 5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K+ in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1.H-771(+). This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca2+-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available