4.4 Article

Liquid plug formation in an airway closure model

Journal

PHYSICAL REVIEW FLUIDS
Volume 4, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.4.093103

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01-HL136141]

Ask authors/readers for more resources

The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to a bifrontal plug growth, this airway closure flow induces high stress levels on the wall, which is the location of airway epithelial cells. A parametric numerical study is carried out simulating relevant conditions for human lungs, in either ordinary or pathological situations. Our simulations can represent the physical process from pre- to postcoalescence phases. Previous studies have been limited to precoalescence only. The topological change during coalescence induces a high level of stress and stress gradients on the epithelial cells, which are large enough to damage them, causing sublethal or lethal responses. We find that postcoalescence wall stresses can be in the range of 300% to 600% greater than precoalescence values and so introduce an important source of mechanical perturbation to the cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available