4.7 Article

Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon

Journal

OPTICA
Volume 6, Issue 10, Pages 1277-1281

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.6.001277

Keywords

-

Categories

Ask authors/readers for more resources

Silicon photonics provides a promising platform for energy-efficient interconnects within supercomputers and data centers. However, developing a complementary metal-oxide-semiconductor compatible high-speed photodetector with low dark current has long presented a challenge in the field. In this paper, we report the first O-band InAs quantum dot (QD) waveguide photodiode (PD) heterogeneously integrated on silicon. Record low dark currents as low as 0.01 nA, responsivities of 0.34 A/W at 1310 nm and 0.9 A/W at 1280 nm, and a record high 3 dB bandwidth of 15 GHz was measured. Avalanche gain was observed and a maximum gain of up to 45 and a gain bandwidth product (GBP) of 240 GHz were achieved, which are also record high results for any QD avalanche photodetector (APD) on silicon. Additionally, we demonstrate a device sensitivity of -11 dBm at 10 Gb/s and open-eye diagrams up to 12.5 Gb/s. These QD-based PDs are able to operate as p-i-n PDs or APDs under different bias conditions and offer a promising alternative to heterogeneous InGaAs-on-silicon and SiGe counterparts in low-power optical communication links. They also leverage the same epitaxial layers and processing steps as heterogeneously integrated QD lasers, significantly simplifying the processing and reducing the cost of a fully integrated QD transceiver on silicon. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available