4.7 Article

Ferroelectric materials for neuromorphic computing

Journal

APL MATERIALS
Volume 7, Issue 9, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5108562

Keywords

-

Funding

  1. National Research Foundation of Korea - Korea government (MSIT) [NRF-2018R1A3B1052693]

Ask authors/readers for more resources

Ferroelectric materials are promising candidates for synaptic weight elements in neural network hardware because of their nonvolatile multilevel memory effect. This feature is crucial for their use in mobile applications such as inference when vector matrix multiplication is performed during portable artificial intelligence service. In addition, the adaptive learning effect in ferroelectric polarization has gained considerable research attention for reducing the CMOS circuit overhead of an integrator and amplifier with an activation function. In spite of their potential for a weight and a neuron, material issues have been pointed out for commercialization in conjunction with CMOS processing and device structures. Herein, we review ferroelectric synaptic weights and neurons from the viewpoint of materials in relation to device operation, along with discussions and suggestions for improvement. Moreover, we discuss the reliability of HfO2 as an emerging material and suggest methods to overcome the scaling issue of ferroelectrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available