4.5 Review

Dipole-Potential-Mediated Effects on Ion Pump Kinetics

Journal

BIOPHYSICAL JOURNAL
Volume 109, Issue 8, Pages 1513-1520

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2015.08.022

Keywords

-

Categories

Ask authors/readers for more resources

The kinetics of conformational changes of P-type ATPases necessary for the occlusion or deocclusion of transported ions are known to be sensitive to the composition of the surrounding membrane, e.g., phospholipid content, mole percentage of cholesterol, and the presence of lipid-bound anions. Research has shown that many membrane components modify the dipole potential of the lipid head-group region. Based on the observation that occlusion/deocclusion reactions of ion pumps perturb the membrane surrounding the protein, a mechanism is suggested whereby dipole potential modifiers induce preferential stabilization or destabilization of occluded or nonoccluded states of the protein, leading to changes in the forward and backward rate constants for the transition. The mechanism relies on the assumption that conformational changes of the protein are associated with changes in its hydrophobic thickness that requires a change in local lipid packing density to allow hydrophobic matching with the membrane. The changes in lipid packing density cause changes in local lipid dipole potential that are responsible for the dependence of conformational kinetics on dipole potential modifiers. The proposed mechanism has the potential to explain effects of lipid composition on the kinetics of any membrane protein undergoing significant changes in its membrane cross-sectional area during its activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available