4.7 Article

iProEP: A Computational Predictor for Predicting Promoter

Journal

MOLECULAR THERAPY-NUCLEIC ACIDS
Volume 17, Issue -, Pages 337-346

Publisher

CELL PRESS
DOI: 10.1016/j.omtn.2019.05.028

Keywords

-

Funding

  1. National Natural Scientific Foundation of China [61772119, 31771471]
  2. Natural Science Foundation for Distinguished Young Scholar of Hebei Province [C2017209244]
  3. Science Strength Promotion Programme of UESTC

Ask authors/readers for more resources

Promoter is a fundamental DNA element located around the transcription start site (TSS) and could regulate gene transcription. Promoter recognition is of great significance in determining transcription units, studying gene structure, analyzing gene regulation mechanisms, and annotating gene functional information. Many models have already been proposed to predict promoters. However, the performances of these methods still need to be improved. In this work, we combined pseudo k-tuple nucleotide composition (PseKNC) with position-correlation scoring function (PCSF) to formulate promoter sequences of Homo sapiens (H. sapiens), Drosophila melanogaster (D. melanogaster), Caenorhabditis elegans (C. elegans), Bacillus subtilis (B. subtilis), and Escherichia coli (E. coli). Minimum Redundancy Maximum Relevance (mRMR) algorithm and increment feature selection strategy were then adopted to find out optimal feature subsets. Support vector machine (SVM) was used to distinguish between promoters and non-promoters. In the 10-fold cross-validation test, accuracies of 93.3%, 93.9%, 95.7%, 95.2%, and 93.1% were obtained for H. sapiens, D. melanogaster, C. elegans, B. subtilis, and E. coli, with the areas under receiver operating curves (AUCs) of 0.974, 0.975, 0.981, 0.988, and 0.976, respectively. Comparative results demonstrated that our method outperforms existing methods for identifying promoters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available