4.7 Article

Animal models for diabetes: Understanding the pathogenesis and finding new treatments

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 99, Issue -, Pages 1-10

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2015.08.108

Keywords

Animal models; Type 1 diabetes; Type 2 diabetes

Ask authors/readers for more resources

Diabetes mellitus is a lifelong, metabolic disease that is characterised by an inability to maintain normal glucose homeostasis. There are several different forms of diabetes, however the two most common are Type 1 and Type 2 diabetes. Type 1 diabetes is caused by the autoimmune destruction of pancreatic beta cells and a subsequent lack of insulin production, whilst Type 2 diabetes is due to a combination of both insulin resistance and an inability of the beta cells to compensate adequately with increased insulin release. Animal models are increasingly being used to elucidate the mechanisms underlying both Type 1 and Type 2 diabetes as well as to identify and refine novel treatments. However, a wide range of different animal models are currently in use. The majority of these models are suited to addressing certain specific aspects of diabetes research, but may be of little use in other studies. All have pros and cons, and selecting an appropriate model for addressing a specific question is not always a trivial task and will influence the study results and their interpretation. Thus, as the number of available animal models increases it is important to consider the potential roles of these models in the many different aspects of diabetes research. This review gathers information on the currently used experimental animal models of both Type 1 and Type 2 diabetes and evaluates their advantages and disadvantages for research purposes and details the factors that should be taken into account in their use. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available