4.5 Article

Temperature triggers a non-linear response in resource-consumer interaction strength

Journal

ECOSPHERE
Volume 10, Issue 8, Pages -

Publisher

WILEY
DOI: 10.1002/ecs2.2787

Keywords

aquatic ecology; Chlorella vulgaris; Daphnia magna; density dependence; paradox of enrichment; predation; trophic control

Categories

Funding

  1. NSERC
  2. Food from Thought program under the Canada First Research Excellence Fund

Ask authors/readers for more resources

Although temperature is recognized as a major determinant of many ecological processes, it is still not clear whether temperature increase caused by climate change will strengthen or weaken species interactions. One hypothesis is that interactions will respond non-monotonically to temperature because thermal performance curves, which determine the strength of these interactions, are also non-monotonic. To evaluate this hypothesis, we developed a temperature-dependent consumer-resource model and tested predictions from this model in large freshwater mesocosms populated with green algae (Chlorella vulgaris) and herbivorous zooplankton (Daphnia magna). We found both in the model simulations and empirical investigations that the suppressive effect of the consumer depended non-monotonically on the temperature. As predicted by the model, Daphnia suppressed the algal maximum per capita growth rate at the temperature that maximized algal growth rate but had little effect on resource growth at either lower or higher temperatures. This finding could help explain why effects of temperature variation on species interaction are variable in the literature and suggests that predicting the effects of temperature on the strength of food web interactions requires knowledge of the thermal performance curves for multiple traits, for multiple species and over a range of temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available