4.6 Article

Estimating Peak Daily Water Demand under Different Climate Change and Vacation Scenarios

Journal

WATER
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/w11091874

Keywords

peak demand forecasting; tourism; climate change; machine learning; extreme value analysis; drinking water

Funding

  1. De Watergroep

Ask authors/readers for more resources

Extremes in drinking water demand are commonly quantified with a so called peaking factor, a probabilistic ratio expressing the daily water demand relative to its annual average corresponding with a once in ten year recurrence period. In this study, we present a modeling framework that allows one to quantify of the impact of climate change and variations in vacation absence on the peaking factor for specific geographic regions. The framework consists of a support vector regression model that simulates daily water demand as a function of meteorological parameters and vacation absence, coupled to an extreme value model that translates simulation results to a peaking factor. After initial model development, we simulated the effects of different climate change/vacation scenarios for 2050 on eight water supply areas in the Netherlands and Belgium. We found that on average there is a net increase in water demand of 0.8% in 2050 and a 6.5% increase in peak demand compared to the reference period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available