4.7 Article

2D Image-To-3D Model: Knowledge-Based 3D Building Reconstruction (3DBR) Using Single Aerial Images and Convolutional Neural Networks (CNNs)

Journal

REMOTE SENSING
Volume 11, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/rs11192219

Keywords

building reconstruction; deep learning; convolutional neural networks; building detection; depth prediction

Ask authors/readers for more resources

In this study, a deep learning (DL)-based approach is proposed for the detection and reconstruction of buildings from a single aerial image. The pre-required knowledge to reconstruct the 3D shapes of buildings, including the height data as well as the linear elements of individual roofs, is derived from the RGB image using an optimized multi-scale convolutional-deconvolutional network (MSCDN). The proposed network is composed of two feature extraction levels to first predict the coarse features, and then automatically refine them. The predicted features include the normalized digital surface models (nDSMs) and linear elements of roofs in three classes of eave, ridge, and hip lines. Then, the prismatic models of buildings are generated by analyzing the eave lines. The parametric models of individual roofs are also reconstructed using the predicted ridge and hip lines. The experiments show that, even in the presence of noises in height values, the proposed method performs well on 3D reconstruction of buildings with different shapes and complexities. The average root mean square error (RMSE) and normalized median absolute deviation (NMAD) metrics are about 3.43 m and 1.13 m, respectively for the predicted nDSM. Moreover, the quality of the extracted linear elements is about 91.31% and 83.69% for the Potsdam and Zeebrugge test data, respectively. Unlike the state-of-the-art methods, the proposed approach does not need any additional or auxiliary data and employs a single image to reconstruct the 3D models of buildings with the competitive precision of about 1.2 m and 0.8 m for the horizontal and vertical RMSEs over the Potsdam data and about 3.9 m and 2.4 m over the Zeebrugge test data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available