4.7 Article

Environmental Differences between Migratory and Resident Ungulates-Predicting Movement Strategies in Rocky Mountain Mule Deer (Odocoileus hemionus) with Remotely Sensed Plant Phenology, Snow, and Land Cover

Journal

REMOTE SENSING
Volume 11, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/rs11171980

Keywords

random forest; migration; residence; partial migration; niche; GPS

Funding

  1. University of Maryland, Smithsonian SEEDs grant

Ask authors/readers for more resources

Migration is a valuable life history strategy for many species because it enables individuals to exploit spatially and temporally variable resources. Globally, the prevalence of species' migratory behavior is decreasing as individuals forgo migration to remain resident year-round, an effect hypothesized to result from anthropogenic changes to landscape dynamics. Efforts to conserve and restore migrations require an understanding of the ecological characteristics driving the behavioral tradeoff between migration and residence. We identified migratory and resident behaviors of 42 mule deer (Odocoileus hemionus) based on GPS locations and correlated their locations to remotely sensed indicators of forage quality, land cover, snow cover, and human land use. The model classified mule deer seasonal migratory and resident niches with an overall accuracy of 97.8% and cross-validated accuracy of 81.2%. The distance to development was the most important variable in discriminating in which environments these behaviors occur, with resident niche space most often closer to developed areas than migratory niches. Additionally, snow cover in December was important for discriminating summer migratory niches. This approach demonstrates the utility of niche analysis based on remotely sensed environmental datasets and provides empirical evidence of human land use impacts on large-scale wildlife migrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available