4.6 Article

Telomere-binding proteins Taz1 and Rap1 regulate DSB repair and suppress gross chromosomal rearrangements in fission yeast

Journal

PLOS GENETICS
Volume 15, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008335

Keywords

-

Funding

  1. JSPS KAKENHI [JP15H02383]

Ask authors/readers for more resources

Genomic rearrangements (gross chromosomal rearrangements, GCRs) threatens genome integrity and cause cell death or tumor formation. At the terminus of linear chromosomes, a telomere-binding protein complex, called shelterin, ensures chromosome stability by preventing chromosome end-to-end fusions and regulating telomere length homeostasis. As such, shelterin-mediated telomere functions play a pivotal role in suppressing GCR formation. However, it remains unclear whether the shelterin proteins play any direct role in inhibiting GCR at non-telomeric regions. Here, we have established a GCR assay for the first time in fission yeast and measured GCR rates in various mutants. We found that fission yeast cells lacking shelterin components Taz1 or Rap1 (mammalian TRF1/2 or RAP1 homologues, respectively) showed higher GCR rates compared to wild-type, accumulating large chromosome deletions. Genetic dissection of Rap1 revealed that Rap1 contributes to inhibiting GCRs via two independent pathways. The N-terminal BRCT-domain promotes faithful DSB repair, as determined by I-SceI-mediated DSB-induction experiments; moreover, association with Poz1 mediated by the central Poz1-binding domain regulates telomerase accessibility to DSBs, leading to suppression of de novo telomere additions. Our data highlight unappreciated functions of the shelterin components Taz1 and Rap1 in maintaining genome stability, specifically by preventing non-telomeric GCRs. Author summary Tips of chromosomes, telomeres, are bound and protected by a telomere-binding protein complex called shelterin. Most previous studies focused on shelterin's telomere-specific role, and its general role in genome maintenance has not been explored extensively. In this study, we first set up an assay measuring the spontaneous formation rate per cell division of gross chromosomal rearrangements (GCRs) in fission yeast. We found that the rate of GCRs is elevated in mutants defective for shelterin components Taz1 or Rap1. Detailed genetic experiments revealed unexpectedly that Taz1 and Rap1 have a novel role in repairing DNA double-strand breaks (DSBs) and suppressing GCRs at non-telomeric regions. Given that shelterin components are conserved between fission yeast and humans, future studies are warranted to test whether shelterin dysfunction leads to genome-wide GCRs, which are frequently observed in cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available