4.8 Article

Integrated Catalysis-Surface Science-Theory Approach to Understand Selectivity in the Hydrogenation of 1-Hexyne to 1-Hexene on PdAu Single-Atom Alloy Catalysts

Journal

ACS CATALYSIS
Volume 9, Issue 9, Pages 8757-8765

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b00491

Keywords

single-atom alloy; selective hydrogenation; catalysts; Pd; Au; 1-hexyne

Funding

  1. Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0012573]
  2. FAS Division of Science, Research Computing Group at Harvard University

Ask authors/readers for more resources

The selective hydrogenation of alkynes to alkenes is an important industrial process. However, achieving high selectivity and reducing the usage of precious platinum group metals are still challenging for the conventional hydrogenation catalysts. With atomically dispersed active metal atoms on the surface of a host metal, single-atom alloys (SAAs) have shown excellent hydrogenation selectivity and activity, but their hydrogenation mechanism is not fully understood. This work reports on the selective hydrogenation of 1-hexyne to 1-hexene on PdAu SAA catalysts. Au is a highly selective hydrogenation catalyst, but it is not active at low temperatures. Through measurements of reaction kinetics and in operando spectroscopy studies, we follow the much more facile activation of PdAu SAA catalysts and demonstrate the different hydrogenation chemistry of single Pd atoms and Pd nanoparticles (NPs). We further investigate the role of Pd atoms and the mechanism behind the improved hydrogenation selectivity through surface science and density functional theory. These studies indicate that the difference in reactivity stems from the relative energy barrier heights for over-hydrogenating the terminal C atom. The complementary catalysis-surface science-theory investigation described here is a powerful and general approach for understanding and controlling NP performance. The selective hydrogenation on PdAu SAAs is demonstrated and understood fundamentally, which serves as a guide for future designs of this type of catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available