4.7 Article

A novel method of assessing and predicting coated cutting tool wear during Inconel DA 718 turning

Journal

WEAR
Volume 432, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2019.202949

Keywords

Finish turning of Inconel 718; Cemented carbide tools; PVD nanocomposite coatings; 3D assessment wear; Tool wear prediction model

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) under the Canadian Network for Research and Innovation in Machining Technology (CANRIMT) [NETGP479639-15]

Ask authors/readers for more resources

This work investigates the wear characteristics of two different coating systems deposited on cemented carbide tools and used in the finish turning of an Inconel DA718 aerospace alloy. The two coatings were: (a) a new nanocomposite multilayer Ti25Al65Cr10N/Ti20Al52Cr22Si8N PVD coating, and (b) an AlTiN benchmark coating. Four different cutting speeds (60, 80, 100 and 120 m/min) were employed during this study. Wear behavior was characterized using three-dimensional volumetric wear progression, as well as flank wear progression, wear mechanism evaluation, and cutting force analysis. A tool life predictive model was created for this process based on both 3D and flank wear patterns. The tool with the nanocomposite coating outperformed the AlTiN benchmark coating under higher speed conditions, and both tools performed best under a surface speed of 80 m/min. The primary wear mechanisms responsible for the performance of these coatings differ in relation to the adaptive behavior of the nanocomposite coating. In addition, tool wear predictions modeled under different cutting conditions demonstrated an estimated accuracy of 93%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available