4.5 Article

Antimony(III/V) removal from industrial wastewaters: treatment of spent catalysts formally used in the SOHIO acrylonitrile process

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 80, Issue 3, Pages 529-540

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2019.299

Keywords

antimony; coagulation; effluent treatment; flocculation; precipitation; SOHIO process

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2017M2A8A5015147]
  2. National Research Foundation of Korea [2017M2A8A5015147] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A treatment and volume reduction process for a spent uranium-antimony catalyst has been developed. Targeted removal, immobilization and disposal of the uranium component has been confirmed, thus eliminating the radiological hazard. However, significant concentrations of antimony ([Sb] >= 25-50 mg L-1) remain in effluent from the process, which require removal in compliance with Korean wastewater regulations. Antimony(III/V) removal via co-precipitation with iron has been considered with optimal pH, dose and kinetics being determined. The effect of selected anions - Cl-, SO42- and PO43- - have also been considered, the latter present due to a prior uranium removal step. Removal of Sb(III) from both Cl- and SO42- media and Sb(V) removal from Cl- media to below release limits were found to be effective within 5 minutes at an iron dose of 8 mM (molar ratio, [Fe-III]/[Sb] = 20) and a target pH of 5.0. However, Sb(V) removal from SO42- was significantly hampered requiring significantly higher iron dosages for the same removal performance. Phosphate poses significant challenges for the removal of Sb(V) due to competition between PO43- and Sb(OH)(6)(-) species for surface binding sites, attributed to similarities in chemistries and a shared preference for an inner vs outer binding mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available