4.7 Article

Assimilation of Satellite Altimetry Data for Effective River Bathymetry

Journal

WATER RESOURCES RESEARCH
Volume 55, Issue 9, Pages 7441-7463

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018WR024010

Keywords

Kalman filter; satellite altimetry; hydrodynamic model; effective bathymetry; water surface elevation; data assimilation

Funding

  1. Brazilian Agency CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)

Ask authors/readers for more resources

One of the main problems of hydrologic/hydrodynamic routing models is defining the right set of parameters, especially on inaccessible and/or large basins. Remote sensing techniques provide measurements of the basin topography, drainage system, and channel width; however current methods for estimating riverbed elevation are not as accurate. This paper presents methods of altimetry data assimilation (DA) for estimating effective bathymetry of a hydrodynamic model. We tested past altimetry observations from satellites ENVISAT, ICESAT, and JASON 2 and synthetic altimetry data from satellites ICESAT 2, JASON 3, SARAL, and Surface Water and Ocean Topography to assess future/present mission's potential. The DA methods used were direct insertion, linear interpolation, the Shuffled Complex Evolution-University of Arizona optimization algorithm, and an adapted Kalman filter developed with hydraulically based variance and covariance introduced in this paper. The past satellite altimetry DA was evaluated comparing simulated and observed water surface elevation while the synthetic altimetry DA were assessed through a direct comparison with a true bathymetry. The Shuffled Complex Evolution-University of Arizona and hydraulically based Kalman filter methods presented the best performances, reducing water surface elevation error in 65% in past altimetry data experiment and reducing biased bathymetry error in 75% in the synthetic experiment; however, the latter method is much less computationally expensive. Regarding satellites, it was observed that the performance is related to the satellite intertrack distance, as higher number of observation sites allows more accurate bed elevation estimation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available