4.5 Article

Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles

Journal

TOXICOLOGICAL SCIENCES
Volume 172, Issue 1, Pages 23-37

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfz173

Keywords

bisphenol analogs; estrogen receptor; androgen receptor; transcriptional activation; gene regulation; binding

Categories

Funding

  1. National Institute of Environmental Health Sciences

Ask authors/readers for more resources

Bisphenol A (BPA) is a high production volume chemical widely used in plastics, food packaging, and many other products. It is well known that endocrine-disrupting chemicals might be harmful to human health due to interference with normal hormone actions. Recent studies report widespread usage and exposure to many BPA-like chemicals (BPs) that are structurally or functionally similar to BPA. However, the biological actions and toxicity of those BPs are still relatively unknown. To address this data gap, we used in vitro cell models to evaluate the ability of 22 BPs to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)alpha and/or ER beta-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ER beta-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ER alpha-mediated activity. None of the BPs induced AR-mediated activity. In addition, we identify that the BPs can bind to ER or AR with varying degrees by a molecular modeling analysis. Taken together, these findings help us to understand the molecular mechanism of BPs and further consideration of their usage in consumer products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available