4.4 Article

Degradation of Mg-doped zinc oxide buffer layers in thin film CdTe solar cells

Journal

THIN SOLID FILMS
Volume 691, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2019.137556

Keywords

Magnesium-doped zinc oxide; Thin film solar cells; Cadmium telluride; Buffer; Degradation; Hydroxide; Surface contamination

Funding

  1. EPSRC [EP/J017361/1, EP/N026438/1]
  2. National Science Foundation (NSF)Industry/University Collaborative Research Center (I/UCRC)
  3. PFI:AIR-RA program
  4. U.S. Department of Energy (DOE) Small Innovative Projects in Solar (SIPS)
  5. EPSRC [EP/S000763/1, EP/N026438/1, EP/J017361/1] Funding Source: UKRI

Ask authors/readers for more resources

Cadmium Sulphide is the conventional n-type buffer layer used in thin film Cadmium Telluride solar cells. It is well known that Cadmium Sulphide causes optical losses and sulphur diffuses into the absorber during high temperature activation. Sputter-deposited Mg-doped ZnO (MZO) has been shown to be an attractive buffer layer for Cadmium Telluride solar cells due to its transparency and tuneable band gap. It is also stable to high temperature processing and avoids diffusion of elements into the cadmium telluride absorber during the cadmium chloride activation treatment. However, degradation is observed in solar cells incorporating MZO buffer layers. Analysis of the MZO film surface potential has revealed significant fluctuations in the thin film work function once the layer is exposed to the atmosphere following deposition. These fluctuations are attributed to the high reactivity to water vapour of the MgO contained in the MZO films. This has been analysed using X-ray Photoelectron Spectroscopy to determine corresponding changes in the surface chemistry. The Zinc Oxide component is relatively stable, but the analysis shows that MgO forms a Mg(OH)(2) layer on the MZO surface which forms a secondary barrier at the MZO/CdTe interface and/or at the interface between MZO and the Fluorine-doped SnO2. This affects the Fill Factor and as a consequence it degrades the conversion efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available