4.6 Article

Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships

Journal

SYSTEMATIC BIOLOGY
Volume 69, Issue 3, Pages 502-520

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/sysbio/syz062

Keywords

Neural network; gene interrogation; lizards; snakes; genomics; phylogeny

Funding

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [BIOTA-FAPESP 2011/50206-9]
  2. National Science Foundation [DEB-1257926, DEB-1441719, DEB-1257610]
  3. Australian Research Council [DP120104146]
  4. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [FAPESP] [2012/08661-3]
  5. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [11/50206-9] Funding Source: FAPESP

Ask authors/readers for more resources

Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards, snakes, and amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. In this study, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome-scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites (PIS), phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of PIS), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; among the three toxicoferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available