4.8 Article

A Light-Driven Microgel Rotor

Journal

SMALL
Volume 15, Issue 46, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201903379

Keywords

microgels; microswimmers; out-of-equilibrium; photothermal actuation; rotational motion; Stokes flow

Funding

  1. DFG-SPP 1726 Microswimmer [255087333, SFB 985]
  2. European Research Council (ERC) [682754]
  3. ERC [695716]
  4. European Research Council (ERC) [695716] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The current understanding of motility through body shape deformation of micro-organisms and the knowledge of fluid flows at the microscale provides ample examples for mimicry and design of soft microrobots. In this work, a 2D spiral is presented that is capable of rotating by non-reciprocal curling deformations. The body of the microswimmer is a ribbon consisting of a thermoresponsive hydrogel bilayer with embedded plasmonic gold nanorods. Such a system allows fast local photothermal heating and nonreciprocal bending deformation of the hydrogel bilayer under nonequilibrium conditions. It is shown that the spiral acts as a spring capable of large deformations thanks to its low stiffness, which is tunable by the swelling degree of the hydrogel and the temperature. Tethering the ribbon to a freely rotating microsphere enables rotational motion of the spiral by stroboscopic irradiation. The efficiency of the rotor is estimated using resistive force theory for Stokes flow. This research demonstrates microscopic locomotion by the shape change of a spiral and may find applications in the field of microfluidics, or soft microrobotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available