4.6 Article

Label-Free Fluorescent Aptasensor for Small Targets via Displacement of Groove Bound Curcumin Molecules

Journal

SENSORS
Volume 19, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/s19194181

Keywords

aptasensor; curcumin; label-free; fluorescence; vitamin D3; small molecules

Funding

  1. King Abdulaziz City for Science and Technology (KACST)

Ask authors/readers for more resources

Signal transduction based on fluorescence is one of the most common optical aptasensors for small molecules. Sensors with a number of unique features including high sensitivity, low cost, and simple operation can be constructed easily. However, the label-free fluorescent approach is limited to synthetic dyes that bind strongly to the aptamer sequence and result in a diminished sensor operation with high detection limits. In this study, we report the use of curcumin as a fluorescent probe to signal aptamer/small target binding events. A substantial enhancement in curcumin's fluorescent emission was observed when bound into the grooves of vitamin D-3 (VTD3) binding aptamer, as an example. However, the introduction of the target molecule causes the aptamer to undergo a conformational change that favors complexing the target molecule over binding the curcumin dye. The sensor was able to detect VTD3 down to 1 fM concentration in buffer solutions and extracted blood samples, operate at a wide dynamic range, and discriminate against potential biological interfering molecules including VTD2. The operation of the curcumin based fluorescent sensor is at least six orders of magnitude more sensitive than a VTD3 sensor constructed with the synthetic dye SYBR Green I. The generality of the reported label-free approach was applied with a previously isolated 75-mer bisphenol-A (BPA) aptamer, confirming that the reported sensing strategy is not confined on a particular aptamer sequence. Our work not only reports a novel sensor format for the detection of small molecules, but also serves fluorescent sensor's most pressing need being novel fluorophores for multiplex targets detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available