4.7 Article

Deriving aquatic life criteria for galaxolide (HHCB) and ecological risk assessment

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 681, Issue -, Pages 488-496

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.05.033

Keywords

Galaxalide; Aquatic life criteria; Species sensitivity distribution; Ecological risk assessment

Funding

  1. National Major Science and Technology Program for Water Pollution Control and Treatment, China [2017ZX07301002]
  2. National Natural Science Foundation of China [41521003]
  3. Open project of State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences

Ask authors/readers for more resources

The polycyclic musk galaxolide (HHCB) is widely used as fragrances in personal care products (PCPs) and has been detected in various environmental media. There is an urgent need to derive aquatic life criteria (ALC) of HHCB for the protection of aquatic organisms. Toxicity tests with 8 Chinese resident aquatic organisms from 3 phyla and 8 families were conducted, and three methods were used for deriving the ALC. A criterion maximum concentration (CMC) of 8.33 mu g/L and a criterion continuous concentration (CCC) of 2.20 mu g/L were derived according to the USEPA guidelines. The acute predicted no effect concentrations (PNECs) values derived by log-normal species sensitivity distribution (SSD) and log-logistic SSD method were 77.41 and 66.47 mu g/L, respectively. In addition, a significant sensitivity difference was observed between the planktonic crustacean and benthic crustacean, and there was no significant difference (p > 0.05) among SSDs based on resident and nonresident species. A comparison of chronic SSDs between HHCB, tonalide (AHTN) and musk ketone (MK) showed that nitro musk (MK) was more toxic to aquatic organisms than polycyclic musks (HHCB and AHTN). Finally, an assessment of risk to aquatic organisms in surface waters and effluents of wastewater treatment plants (WWfPs) worldwide showed that potential risk may exist at several locations. HHCB concentrations in 4.08 and 46.17% of the WWTP effluents in China and 1.71 and 16.13% of the WWTP effluents in other countries exceed the hazard concentration for 5% and 1% aquatic species. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available