4.6 Article

Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 306, Issue -, Pages 117-127

Publisher

ELSEVIER
DOI: 10.1016/j.bbr.2016.03.027

Keywords

trpc4 knockout; Cocaine self-administration; Dopamine; Mesolimbic; Immunohistochemistry

Funding

  1. National Institute on Drug Abuse (NIDA) [R01 DA24040]

Ask authors/readers for more resources

Among the canonical transient receptor potential (TRPC) channels, the TRPC4 non-selective cation channel is one of the most abundantly expressed subtypes within mammalian corticolimbic brain regions, but its functional and behavioral role is unknown. To identify a function for TRPC4 channels we compared the performance of rats with a genetic knockout of the trpc4 gene (trpc4 KO) to wild-type (WT) controls on the acquisition of simple and complex learning for natural rewards, and on cocaine self-administration (SA). Despite the abundant distribution of TRPC4 channels through the corticolimbic brain regions, we found tipc4 KO rats exhibited normal learning in Y-maze and complex reversal shift paradigms. However, a deficit was observed in cocaine SA in the trpc4 KO group, which infused significantly less cocaine than WT controls despite displaying normal sucrose SA. Given the important role of ventral tegmental area (VTA) dopamine neurons in cocaine SA, we hypothesized that TRPC4 channels may regulate basal dopamine neuron excitability. Double-immunolabeling showed a selective expression of TRPC4 channels in a subpopulation of putative dopamine neurons in the VTA. Ex vivo recordings of spontaneous VTA dopamine neuronal activity from acute brain slices revealed fewer cells with high-frequency firing rates in trpc4 KO rats compared to WT controls. Since deletion of the trpc4 gene does not impair learning involving natural rewards, but reduces cocaine SA, these data demonstrate a potentially novel role for TRPC4 channels in dopamine systems and may offer a new pharmacological target for more effective treatment of a variety of dopamine disorders. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available