4.5 Article

A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 90, Issue 10, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5109321

Keywords

-

Funding

  1. Swedish Research Council (Vetenskapsradet VR)
  2. Global Climate and Energy Project (GCEP) at Stanford University
  3. Knut and Alice Wallenberg (KAW) foundation
  4. Swedish Foundation for strategic research (Stiftelsen for Strategisk Forskning, SSF) [ITM 17-0034]

Ask authors/readers for more resources

We present a new high-pressure x-ray photoelectron spectroscopy system dedicated to probing catalytic reactions under realistic conditions at pressures of multiple bars. The instrument builds around the novel concept of a virtual cell in which a gas flow onto the sample surface creates a localized high-pressure pillow. This allows the instrument to be operated with a low pressure of a few millibar in the main chamber, while simultaneously a local pressure exceeding 1 bar can be supplied at the sample surface. Synchrotron based hard x-ray excitation is used to increase the electron mean free path in the gas region between sample and analyzer while grazing incidence <5 degrees close to total external refection conditions enhances surface sensitivity. The aperture separating the high-pressure region from the differential pumping of the electron spectrometer consists of multiple, evenly spaced, micrometer sized holes matching the footprint of the x-ray beam on the sample. The resulting signal is highly dependent on the sample-to-aperture distance because photoemitted electrons are subject to strong scattering in the gas phase. Therefore, high precision control of the sample-to-aperture distance is crucial. A fully integrated manipulator allows for sample movement with step sizes of 10 nm between 0 and -5 mm with very low vibrational amplitude and also for sample heating up to 500 degrees C under reaction conditions. We demonstrate the performance of this novel instrument with bulk 2p spectra of a copper single crystal at He pressures of up to 2.5 bars and C1s spectra measured in gas mixtures of CO + H-2 at pressures of up to 790 mbar. The capability to detect emitted photoelectrons at several bars opens the prospect for studies of catalytic reactions under industrially relevant operando conditions. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available