4.4 Article

Kinetics of lipid mixing between bicelles and nanolipoprotein particles

Journal

BIOPHYSICAL CHEMISTRY
Volume 197, Issue -, Pages 47-52

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bpc.2015.01.006

Keywords

Nanolipoprotein particle; Bicelle; Stopped flow; Fluorescence resonance energy transfer; Sigmoid kinetics; Membrane fusion

Funding

  1. NIH [R21AI101767, R25GM096955]

Ask authors/readers for more resources

Nanolipoprotein particles (NLPs), also known as nanodiscs, are lipid bilayers bounded by apolipoprotein. Lipids and membrane proteins cannot exchange between NLPs. However, the addition of bicelles opens NLPs and transfers their contents to bicelles, which freely exchange lipids and proteins. NLP-bicelle interactions may provide a new method for studying membrane protein oligomerization. The interaction mechanism was investigated by stopped flow fluorometry. NLPs with lipids having fluorescence resonance energy transfer (FRET) donors and acceptors were mixed with a 200-fold molar excess of dihexanoyl phosphatidylcholine (DHPC)/dimyristoyl phosphatidylcholine (DMPC) bicelles, and the rate of lipid transfer was monitored by the disappearance of FRET. Near or below the DMPC phase transition temperature, the kinetics were sigmoidal. Free DHPC and apolipoprotein were ruled out as participants in autocatalytic mechanisms. The NLP-bicelle mixing rate showed a strong temperature dependence (activation energy = 28 kcal/mol). Models are proposed for the NLP-bicelle mixing, including one involving fusion pores. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available