4.6 Article

Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio)

Journal

BEHAVIOURAL BRAIN RESEARCH
Volume 303, Issue -, Pages 109-119

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbr.2016.01.034

Keywords

Zebrafish (Danio rerio); Associative learning; SKF-38393; Quinpirole; SCH-23390; Eticlopride

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants

Ask authors/readers for more resources

The zebrafish (Danio rerio) has been shown to be an insatiable rival for mammalian model organisms, in many research areas including behavioral neuroscience. Despite a growing body of evidence on successful performance of zebrafish in learning paradigms, little progress has been made toward elucidating the role of neuromodulatory systems in regulation of cognitive functions in this species. Here, we investigated the modulatory effect of dopamine, one of the major neurotransmitters of importance in the brain, on cognitive performance of zebrafish. To this end, a plus maze associative learning paradigm was employed where fish trained to associate a conditioned visual stimulus with the sight of conspecifics as the rewarding unconditioned stimulus. Experimental fish were exposed to dopaminergic agonists (SKF-38393 and quinpirole) and antagonists (SCH-23390 and eticlopride) immediately before training, after training, and just before probe. Pre- and post-training administration of SKF-38393 and SCH-23390 enhanced learning and memory performance of zebrafish in the maze but not when given immediately before the probe trial. Quinpirole also enhanced probe trial performance when administered immediately before training and before the probe but not when given after training. Furthermore, fish that received eticlopride before training, after training or before the probe showed impairment in associative learning performance. Taken together, our results shed first light on modulatory role of dopamine receptors in different aspects of learning and memory in zebrafish. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available