4.8 Review

Soot formation in laminar counterflow flames

Journal

PROGRESS IN ENERGY AND COMBUSTION SCIENCE
Volume 74, Issue -, Pages 152-238

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pecs.2019.05.003

Keywords

Soot formation; Counterflow flames; Laminar flames; Soot measurement; Soot modelling

Funding

  1. National Natural Science Foundation of China [51606136]
  2. Clean Combustion Research Center of KAUST

Ask authors/readers for more resources

Many practical soot-emitting combustion systems such as diesel and jet engines rely on diffusion flames for efficient and reliable operation. Efforts to mitigate soot emissions from these systems are dependent on fundamental understanding of the physicochemical pathways leading from fuel to soot in laminar diffusion flames. Existing diffusion flame-based soot studies focused primarily on over-ventilated coflow flame where the fuel gas (or vapor) issues from a cylindrical tube into a co-flowing oxidizer, and counterflow flame, where a reacting zone is established between two opposing streams of fuel and oxidizer. As a canonical diffusion flame configuration, laminar counterflow diffusion flames have been widely used as a highly controllable environment for soot research, enabling significant progress in the understanding of soot formation for several decades. In view of the possibility of fuel/oxidizer premixing in practical systems, counterflow partially premixed flames have also been studied. In the present work we intend to provide a comprehensive review of the researches on various aspects of soot formation utilizing counterflow flames. Major processes of soot formation (formation of gas phase soot precursors, soot inception and surface reactions, as well as particle-particle interactions) are examined first, with focus on the most recent (post-2010) research progress. Experimental techniques and associated challenges for the measurement of soot-related properties (some knowledge of which is helpful for full appreciation of the experimental data to be reviewed) are then introduced. This is followed by a detailed description of soot evolution in counterflow flames, which is complemented by a discussion on the similarity and differences of the sooting structures between counterflow and coflow diffusion flames. Parametric studies of the effects of fuel molecular structure, fuel additive, partial-premixing, pressure, temperature, stoichiometric mixture fraction, and residence time on soot formation in counterflow flames will then be addressed in detail. This review concludes with a summary of the knowledge and challenges gathered and demonstrated through decades of research, and an outlook on opportunities for future counterflow flame-based soot research towards a more complete understanding of soot formation and the development of novel techniques for soot mitigation in practical combustion devices. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available