4.8 Article

Cooling requirements fueled the collapse of a desert bird community from climate change

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1908791116

Keywords

thermoregulation; climate change; desert birds; evaporative cooling; Bergmann's rule

Funding

  1. National Science Foundation (Division of Environmental Biology Grants) [1457742, 1457524]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [1457742, 1457524] Funding Source: National Science Foundation

Ask authors/readers for more resources

Climate change threatens global biodiversity by increasing extinction risk, yet few studies have uncovered a physiological basis of climate-driven species declines. Maintaining a stable body temperature is a fundamental requirement for homeothermic animals, and water is a vital resource that facilitates thermoregulation through evaporative cooling, especially in hot environments. Here, we explore the potential for thermoregulatory costs to underlie the community collapse of birds in the Mojave Desert over the past century in response to climate change. The probability of persistence was lowest for species occupying the warmest and driest sites, which imposed the greatest cooling costs. We developed a general model of heat flux to evaluate whether water requirements for evaporative cooling contributed to species' declines by simulating thermoregulatory costs in the Mojave Desert for 50 bird species representing the range of observed declines. Bird species' declines were positively associated with climate-driven increases in water requirements for evaporative cooling and exacerbated by large body size, especially for species with animal-based diets. Species exhibiting reductions in body size across their range saved up to 14% in cooling costs and experienced less decline than species without size reductions, suggesting total cooling costs as a mechanism underlying Bergmann's rule. Reductions in body size, however, are unlikely to offset the 50 to 78% increase in cooling costs threatening desert birds from future climate change. As climate change spreads warm, dry conditions across the planet, water requirements are increasingly likely to drive population declines, providing a physiological basis for climate-driven extinctions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available