4.6 Article

Biomechanical and tomographic differences in the microarchitecture and strength of trabecular and cortical bone in the early stage of male osteoporosis

Journal

PLOS ONE
Volume 14, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0219718

Keywords

-

Funding

  1. Chi-Mei Medical Center, Taipei, Taiwan [102CM-TMU-14-4]
  2. Wan Fang Hospital, Taipei, Taiwan [108-wf-eva-04]
  3. Ministry of Science and Technology, Taipei, Taiwan [MOST107-2314-B-038-036-MY3]

Ask authors/readers for more resources

Osteoporosis is a continuous process of loss of bone tissue. Compared to women, osteoporosis in men is associated with greater morbidity and mortality. In this study, we conducted tomographic and biomechanical evaluations of trabecular and cortical bone in the early stage of male osteoporosis. Male Wistar rats were subjected to orchiectomy and sham operation. Four weeks after being castrated, decreased levels of testosterone in plasma were found and resulted in concurrent bone loss. Separately, the orchiectomy led to significant tomographic alterations in the trabecular bone number, trabecular separation, and trabecular pattern factor. Data of a mechanistic compression test further showed that the orchiectomy diminished the maximum loading force, displacement at maximum load, energy at maximum load, and ultimate stress. Interestingly, orchiectomy-triggered changes in the maximum loading force and tomographic parameters were highly correlated. In contrast, tomographic and biomechanical analyses showed that 4 weeks after rats were orchiectomized, the thickness, area, maximum loading force, bone stiffness, energy at maximum load, and ultimate stress of the cortical bone were not changed. Taken together, this study showed specific differences in the microarchitecture and strength of trabecular bone in the early stage of male osteoporosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available