4.6 Article

Soil respiration from fields under three crop rotation treatments and three straw retention treatments

Journal

PLOS ONE
Volume 14, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0219253

Keywords

-

Funding

  1. Shaanxi Provincial Government [2016KTCL02-11]
  2. NingXia Academy of Agriculture and Forestry Sciences [QCYL2018-09]

Ask authors/readers for more resources

Straw retention is an effective method to conserve soil water content and improve soil carbon stocks. However, how soil carbon dynamics respond to different straw retention practices remains unclear. In this study, we investigated soil respiration and soil carbon sequestration at depths of 0-100 cm. We conducted a two-year field experiment with three crop rotation treatments and three straw retention treatments in northwest China. The straw retention treatments included no straw retention (NS), retention of half the straw (HS), and retention of the total amount of straw (TS). The crop rotations treatments included winter wheat plus summer soybean (WS), winter wheat plus summer maize (WM), and winter wheat plus summer fallow (WF). Mean soil respiration rates under WS, WM, and WF treatments were 5.14, 6.53, and 5.49 mu mol.m(-2).s(-1); and 5.67, 5.47, and 6.03 mu mol.m(-2).s(-1) under TS, HS, and NS treatments. The mean soil water content were 15.50%, 15.57%, and 15.74% under WS, WM, and WF rotations, and 15.81%, 15.41%, and 15.50% under TS, HS, and NS treatments. The soil organic carbon (SOC) concentration was higher with increased straw retention, and lower at deeper soil depths. Mean SOC concentrations under different rotations and straw treatments of TS, HS, and NS, respectively were as follows: WS: 6.91, 6.63, 6.39 g/kg; WM: 6.90, 6.72, 6.57 g/kg; and WF: 6.49, 6.52, 6.37 g/kg. Soil temperature was the main determinant of soil respiration rates. We conclude that WS rotation resulted in lower soil respiration, WM rotation resulted in a higher soil carbon sequestration potential, and WF rotation resulted in higher soil water content. However, continued, long-term monitoring is needed to confirm the effect of rotations and straw retention on soil respiration and carbon sequestration in dryland cropping systems in northern China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available