4.7 Article

Warming effects on soil respiration in moss-dominated crusts in the Tengger Desert, northern China

Journal

PLANT AND SOIL
Volume 443, Issue 1-2, Pages 591-603

Publisher

SPRINGER
DOI: 10.1007/s11104-019-04255-y

Keywords

Soil respiration; Biological soil crust; Warming; Temperature; Diel hysteresis

Funding

  1. National Natural Science Foundation of China [41530746]

Ask authors/readers for more resources

Background and aims Despite the important role of biological soil crusts in the soil carbon cycles of desert ecosystems, the responses of soil respiration in biological soil crust-dominated areas to warming are not well understood. The goal of this study was to investigate the expected increases in temperature on soil respiration both diurnally and seasonally in biological soil crust-dominated areas. Methods We used open-top chambers to simulate warming in the Shapotou region in the Tengger Desert, northern China. An automated soil respiration system was used to measure the soil respiration rates in moss-dominated crusts. The measured environmental variables included the precipitation, volumetric soil water content, air temperature and soil temperature at depths of 0, 5, 10, 20, and 50 cm. Results The response of soil respiration to warming is a function of soil moisture following rainfall in desert ecosystems. Our results showed that 1.5 degrees C of simulated warming significantly decreased soil respiration, indicating that the inhibition of soil respiration was likely due to the reduction in soil water content at a relatively high temperature. Over daily cycles, hourly soil respiration rates have commonly been related to hourly temperatures. The observed diel hysteresis between hourly soil respiration and temperature resulted in semielliptical hysteresis loops, and the temperature often lagged behind soil respiration for several hours. The lag times between soil respiration and temperature were significantly and positively related to the depth of the soil temperature measurements. The proximate reason for the diel hysteresis between soil respiration and temperature was likely a mismatch between the depth of CO2 production and the depth of the temperature measurements. Conclusions Our results indicate that warming increases the response of soil respiration to soil water availability in biological soil crust-dominated desert ecosystems. Therefore, the accelerated drying effect of warming on soil respiration and diel soil respiration patterns between soil respiration and temperature at different depths should be considered in future soil carbon cycle models for biological soil crust-dominated desert ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available