4.7 Article

Rheological signatures of aging in hard sphere colloidal glasses

Journal

PHYSICS OF FLUIDS
Volume 31, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5113500

Keywords

-

Funding

  1. Greek project Thales Covisco
  2. Greek project Aristeia II MicroSoft
  3. EU project SmartPro

Ask authors/readers for more resources

Colloidal glasses are out-of-equilibrium in nature. When such materials are quenched from a shear-melted state into a quiescent one, their structure freezes due to entropic caging of the constituents. However, thermal fluctuations allow slow structural evolution, a process known as aging, in favor of minimizing free energy. Here, we examine the rheological signatures of aging, in a model system of nearly hard sphere colloidal glass. Subtle changes in the linear viscoelastic properties are detected with the age of the colloidal glass where viscous modulus shows a decrease with aging whereas the elastic modulus remains unaffected. This is associated with the slowing-down of long-time out-of-cage dynamics as the glass ages. On the contrary, nonlinear rheological measurements such as start-up shear flow, stress relaxation, and creep experiments show a strong dependence on sample age. Moreover, creep and stress relaxation experiments show ample evidence of avalanche type processes that occur during aging of colloidal glasses. Finally, comparison of creep and start-up shear flow measurements indicate that the latter is more energy efficient in inducing flow in colloidal glasses irrespective of aging dynamics. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available