4.4 Article

Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1

Journal

PEPTIDES
Volume 118, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2019.170107

Keywords

Angiotensin I converting enzyme; Arthrospira platensis; Molecular docking; Molecular dynamic; SpirPep; Spirulina

Funding

  1. Bioinformatics and Systems Biology HRD project [P-11-01089]
  2. National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand
  3. National Research University Project, KMUTT [59000375]

Ask authors/readers for more resources

Bioactive peptides from natural sources are utilized as food supplements for disease prevention and are increasingly becoming targets for drug discovery due to their specificity, efficacy and the absence of undesirable side effects, among others. Hence, the 'SpirPep' platform was developed to facilitate the in silico-based bioactive peptide discovery of these highly sought-after biomolecules from Spirulina(Arthrospira platensis) and to select the protease (thermolysin) used for in vitro digestion. Analysis of the predicted and experimentally-derived peptides suggested that they were mainly involved in ACE inhibition; thus, an ACEi assay was used to study the ACE inhibitory activity of five candidate peptides (SpirPep1-5), chosen from common peptides with multifunctional bioactivity and 100% bioactive peptide coverage, originating from phycobiliproteins. Results showed that SpirPep1 inhibited the activity of ACE with IC50 of 1.748 mM and was non-toxic to fibroblasts of African green monkey kidney and human dermal skin. The molecular docking and MD simulation analysis revealed SpirPep1 had significantly lower binding scores than others and showed greater specificity to ACE. The non-bonded interaction energy of SpirPep1 and ACE was -883 kJ/mol. The SpirPep1 indirectly bound to ACE via the ACE substrate binding sites residues (D121, E123, 5516, and 5517) found in natural ACE inhibitory peptides (angiotensin II and bradykinin potentiating peptides). In addition, two unreported substrate binding sites including R124 and S219 were found. These results indicate that ;SpirPep' platform could increase the success rate for natural bioactive peptide discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available