4.6 Article

Plasmonic hole-transport-layer enabled self-powered hybrid perovskite photodetector using a modified perovskite deposition method in ambient air

Journal

ORGANIC ELECTRONICS
Volume 71, Issue -, Pages 175-184

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2019.05.021

Keywords

Plasmonic perovskite photodetector; Self-biased photodetector; Kelvin probe force microscopy; Fast photoresponse

Funding

  1. Meity [5(9)/2012-NANO(VOL-II)]
  2. DST [DST/INSPIRE/04/2016/000881]

Ask authors/readers for more resources

Herein, we report on an air-processed high performance self-powered hybrid perovskite (Pe) photodetector with plasmonic Silver nanoparticle (Ag NP) embedded hole-transport-layer (HTL), without the use of any electron-transporting layer (ETL). It is demonstrated that in the absence of ETL in the device, the Ag NPs embedded PEDOT:PSS HTL improves the photodetection performance significantly. We used a novel N-2 gas assisted fast crystallization method for the deposition of perovskite film in ambient condition to form uniform Pe layer as compared to the nonuniform film obtained in conventional deposition method. The Pe film on Ag NPs embedded PEDOT:PSS layer shows enhanced optical absorption in the UV-visible region due to the plasmonic absorption by the Ag NPs. At zero bias, the ETL-free Ag NPs-Pe hybrid device shows similar to 45% enhanced responsivity and similar to 3 times faster photoresponse compared to the pristine device. The enhancements in the performance of hybrid photodetector are attributed to plasmon-enhanced optical absorption and hot electron generation, as well as improvement in charge extraction and transport by Ag NPs, which are corroborated by steady-state and time-resolved photoluminescence measurements. Impedance analysis of the devices shows the reduced carrier transfer resistance of the hybrid device, which results in superior transport of photo-generated charge carriers. Direct evidence for the increase in the work function by similar to 47 meV for Ag NPs doped PEDOT:PSS film is provided from the Kelvin probe force microscopy analysis. This increase in work function enables favorable band alignment with reduced energy barrier and a superior carrier transport resulting in improved photodetection performance for the hybrid device. Our results are significant for the development of high-performance, low-cost, ETL free plasmonic perovskite photodetectors for futuristic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available