4.6 Article

Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging

Journal

OPTICS EXPRESS
Volume 27, Issue 18, Pages 25560-25572

Publisher

Optica Publishing Group
DOI: 10.1364/OE.27.025560

Keywords

-

Categories

Funding

  1. Chinese Academy of Sciences [QYZDB-SSW-JSC002]
  2. Sino-German Center [GZ 1391]

Ask authors/readers for more resources

Artificial intelligence (AI) techniques such as deep learning (DL) for computational imaging usually require to experimentally collect a large set of labeled data to train a neural network. Here we demonstrate that a practically usable neural network for computational imaging can be trained by using simulation data. We take computational ghost imaging (CGI) as an example to demonstrate this method. We develop a one-step end-to-end neural network, trained with simulation data, to reconstruct two-dimensional images directly from experimentally acquired one-dimensional bucket signals, without the need of the sequence of illumination patterns. This is in particular useful for image transmission through quasi-static scattering media as little care is needed to take to simulate the scattering process when generating the training data. We believe that the concept of training using simulation data can be used in various DL-based solvers for general computational imaging. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available