4.6 Article

Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb:fiber laser

Journal

OPTICS EXPRESS
Volume 27, Issue 20, Pages 28062-28074

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.27.028062

Keywords

-

Categories

Funding

  1. Austrian Federal Ministry for Digital and Economic Affairs
  2. National Foundation for Research, Technology and Development
  3. Austrian Science Fund (FWF) [M2561-N36]

Ask authors/readers for more resources

We demonstrate dual-comb generation from an all-polarization-maintaining dual-color ytterbium (Yb) fiber laser. Two pulse trains with center wavelengths at 1030 nm and 1060 run respectively are generated within the same laser cavity with a repetition rate around 77 MHz. Dual-color operation is induced using a tunable mechanical spectral filter, which cuts the gain spectrum into two spectral regions that can be independently mode-locked. Spectral overlap of the two pulse trains is achieved outside the laser cavity by amplifying the 1030-nm pulses and broadening them in a nonlinear fiber. Spatially overlapping the two arms on a simple photodiode then generates a down-converted radio frequency comb. The difference in repetition rates between the two pulse trains and hence the line spacing of the down-converted comb can easily be tuned in this setup. This feature allows for a flexible adjustment of the tradeoff between non-aliasing bandwidth vs. measurement time in spectroscopy applications. Furthermore, we show that by fine-tuning the center-wavelengths of the two pulse trains, we are able to shift the down-converted frequency comb along the radio-frequency axis. The usability of this dual-comb setup is demonstrated by measuring the transmission of two different etalons while the laser is completely free-running. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available