4.4 Article

Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF)

Journal

NUTRITIONAL NEUROSCIENCE
Volume 24, Issue 8, Pages 650-659

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/1028415X.2019.1665854

Keywords

Brain aging; neurophysiologic alterations; neuroprotection; vitamin D supplementation; BDNF

Ask authors/readers for more resources

This study found that vitamin D supplementation can significantly alleviate the aging-related reductions in brain BDNF levels, AChE and antioxidant enzyme activities, and elevation in malondialdehyde levels and caspase-3 activity. Furthermore, brain BDNF levels were positively correlated with serum vitamin D levels and brain AChE activity, and negatively correlated with brain malondialdehyde levels and caspase-3 activity in the supplemented groups.
Background/aim: Vitamin D has been hypothesized to be main regulator of the aging rate, alongside evidences support its role in neuroprotection. However, data about the protective role of vitamin D against neurophysiologic alterations associated with brain aging is limited. This study investigated the possible protective effects that vitamin D has on brain-derived neurotrophic factor (BDNF), cholinergic function, oxidative stress and apoptosis in aging rat brain. Methods: Male Wister albino rats aged 5 months (young), 12 months (middle aged) and 24 months (old) (n = 20 each) were used. Each age group subdivided to either vitamin D3 supplementation (500 IU/kg/day orally for 5 weeks) or no supplementation (control) group (n = 10 each). Serum 25-hydroxyvitamin D [25(OH)D], brain BDNF and malondialdehyde levels and activities of acetylcholinesterase (AChE), antioxidant enzymes (glutathione reductase, glutathione peroxidase and superoxide dismutase) and caspase-3 were quantified. Results: Vitamin D supplementation significantly mitigated the observed aging-related reduction in brain BDNF level and activities of AChE and antioxidant enzymes and elevation in malondialdehyde level and caspase-3 activity compared to control groups. Brain BDNF level correlated positively with serum 25(OH) D level and brain AChE activity and negatively with brain malondialdehyde level and caspase-3 activity in supplemented groups. Conclusion: Restoring vitamin D levels may, therefore, represent a useful strategy for healthy brain aging. Augmenting brain BDNF seems to be a key mechanism through which vitamin D counteracts age-related brain dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available