4.6 Article

Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub

Journal

NEW PHYTOLOGIST
Volume 225, Issue 2, Pages 713-726

Publisher

WILEY
DOI: 10.1111/nph.16196

Keywords

anisohydry; drought response; hydraulic behavior; isohydry; Larrea tridentata (creosotebush); xylem water potential

Categories

Ask authors/readers for more resources

Plant species are characterized along a spectrum of isohydry to anisohydry depending on their regulation of water potential (psi), but the plasticity of hydraulic strategies is largely unknown. The role of environmental drivers was evaluated in the hydraulic behavior of Larrea tridentata, a drought-tolerant desert shrub that withstands a wide range of environmental conditions. With a 1.5 yr time-series of 2324 in situ measurements of daily predawn and midday psi, the temporal variability of hydraulic behavior was explored in relation to soil water supply, atmospheric demand and temperature. Hydraulic behavior in Larrea was highly dynamic, ranging from partial isohydry to extreme anisohydry. Larrea exhibited extreme anisohydry under wet soil conditions corresponding to periods of high productivity, whereas partial isohydry was exhibited after prolonged dry or cold conditions, when productivity was low. Environmental conditions can strongly influence plant hydraulic behavior at relatively fast timescales, which enhances our understanding of plant drought responses. Although species may exhibit a dominant hydraulic behavior, variable environmental conditions can prompt plasticity in psi regulation, particularly for species in seasonally dry climates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available