4.2 Article

Whole-Cell Modeling and Simulation: A Brief Survey

Journal

NEW GENERATION COMPUTING
Volume 38, Issue 1, Pages 259-281

Publisher

SPRINGER
DOI: 10.1007/s00354-019-00066-y

Keywords

Whole-cell modeling; Synthetic biology; Personalized medicine; Modeling and simulation; GPU computing; Accelerated simulation

Ask authors/readers for more resources

Gaining knowledge and engineering of biological systems require comprehensive models of cellular physiology with 100% predictability. The whole-cell models direct experiments in molecular biological science and empower simulation and computer-aided design in synthetic biology. Whole-cell modeling and simulation help in personalized medical treatment building a biological system through cell interactions. In addition, the whole-cell model can address specific issues such as transcription, regulation, pathways for protein expression and many more. Constructing comprehensive whole-cell models with enough detail and validating them is a massive work. Though considering available parameters and pathways, modeling and simulation of a cell are partially successful, still, there exist a lot of more challenges that need to be tackled. Notwithstanding the immense challenges, whole-cell models are quickly getting to be viable. This paper briefly reviews the cutting edge of existing methods and techniques with their present status and the reason for improvements required in various stages of whole-cell modeling such as (1) collection of data, (2) designing tools and model building, (3) acceleration of simulation speed and (4) visualizing and analyzing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available