4.5 Article

Fronto-Parietal Brain Areas Contribute to the Online Control of Posture during a Continuous Balance Task

Journal

NEUROSCIENCE
Volume 413, Issue -, Pages 135-153

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2019.05.063

Keywords

cortex; balance; EEG; TMS

Categories

Funding

  1. Core for Advanced MRI (CAMRI) at Baylor College of Medicine

Ask authors/readers for more resources

Neuroimaging studies have provided evidence for the involvement of frontal and parietal cortices in postural control. However, the specific role of these brain areas for postural control remains to be known. Here, we investigated the effects of disruptive transcranial magnetic stimulation (TMS) over supplementary motor areas (SMA) during challenging continuous balance task in healthy young adults. We hypothesized that a virtual lesion of SMA will alter activation within the brain network identified using electroencephalography (EEG) and impair performance of the postural task. Twenty healthy young adults received either continuous theta burst stimulation (cTBS) or sham stimulation over SMA followed by the performance of a continuous balance task with or without somatosensory input distortion created by sway-referencing the support surface. cTBS over SMA compared to sham stimulation showed a smaller increase in root mean square of center of pressure as the difficulty of continuous balance task increased suggestive of altered postural control mechanisms to find a stable solution under challenging sensory conditions. Consistent with earlier studies, we found sources of EEG activation within anterior cingulate (AC), cingulate gyrus (CG), bilateral posterior parietal regions (PPC) during the balance task. Importantly, cTBS over SMA compared to sham stimulation altered EEG power within the identified fronto-parietal regions. These findings suggest that the changes in activation within distant fronto-parietal brain areas following cTBS over SMA contributed to the altered postural behavior. Our study confirms a critical role of AC, CG, and both PPC regions in calibrating online postural responses during a challenging continuous balance task. (C) 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available