4.8 Article

Corner states of light in photonic waveguides

Journal

NATURE PHOTONICS
Volume 13, Issue 10, Pages 697-+

Publisher

NATURE RESEARCH
DOI: 10.1038/s41566-019-0519-y

Keywords

-

Funding

  1. Swedish Research Council (VR)
  2. Knut and Alice Wallenberg Foundation

Ask authors/readers for more resources

The recently established paradigm of higher-order topological states of matter has shown that not only edge and surface states(1,2) but also states localized to corners, can have robust and exotic properties(3-9). Here we report on the experimental realization of novel corner states made out of visible light in three-dimensional photonic structures inscribed in glass samples using femtosecond laser technology(10,11). By creating and analysing waveguide arrays, which form two-dimensional breathing kagome lattices in various sample geometries, we establish this as a platform for corner states exhibiting a remarkable degree of flexibility and control. In each sample geometry we measure eigenmodes that are localized at the corners in a finite frequency range, in complete analogy with a theoretical model of the breathing kagome(7-9,12-14). Here, measurements reveal that light can be 'fractionalized,' corresponding to simultaneous localization to each corner of a triangular sample, even in the presence of defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available