4.5 Article

Dynamically feasible, energy efficient motion planning for skid-steered vehicles

Journal

AUTONOMOUS ROBOTS
Volume 41, Issue 2, Pages 453-471

Publisher

SPRINGER
DOI: 10.1007/s10514-016-9550-8

Keywords

Skid-steered vehicles; Dynamic modeling; Power modeling; Motion planning; Energy efficient

Funding

  1. U.S. Army Research Laboratory under the Collaborative Technology Alliance Program [DAAD 19-01-2-0012]

Ask authors/readers for more resources

Recent research has developed experimentally verified dynamic models for skid-steered wheeled vehicles and used these results to derive a power model for this important class of all-terrain vehicles. As presented in this paper, based on the torque limitations of the vehicle motors, the dynamic model can be used to develop payload and terrain-dependent minimum turn radius constraints and the power model can be used to predict the energy consumption of a given trajectory. This paper uses these results along with sampling based model predictive optimization to develop an effective methodology for generating dynamically feasible, energy efficient trajectories for skid-steered autonomous ground vehicles (AGVs) and compares the resultant trajectories with those based on the standard distance optimal trajectories. The simulated and experimental results consider an AGV moving at a constant forward velocity on both wood and asphalt surfaces under various payloads. The results show that a small increase in the distance of a trajectory over the distance optimal trajectory can result in a dramatic savings in the AGV's energy consumption. They also show that distance optimal planning can often produce trajectories that violate the motor torque constraints for skid-steered AGVs, which can result in poor navigation performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available